Nitz.   Standard.   Classics.


  1. Nitz, D.A. (2006) Tracking route progression in the posterior parietal cortex. Neuron, 49: 747-756.  (PDF)

  2. Nitz, D.A (2012) Spaces within spaces: rat parietal cortex neurons register postion across three reference frames. Nature Neuroscience 15, pgs. 1365-1367.   (PDF)

  3. Kargo, W.J., Szatmary B., Nitz, D.A. (2007) Adaptation of prefrontal cortical firing patterns and their fidelity to changes in action-reward contingencies. J. Neurosci. 27(13):3548-59.  (PDF)

  4. Nitz, D.A. (2009) Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information. Neurobiol. Learn. Mem., 91(2): 179-85.  (PDF)

  5. Cowen, S.L., Nitz, D.A (2014) Repeating firing fields of CA1 neurons shift foward in response to increasing angular velocity. The Journal of Neuroscience, 1 January 2014, 34(1): 232-241; doi: 10.1523/JNEUROSCI.1199-13.2014.   (PDF)

  6. Cowen, S.L., Davis, G.A., Nitz, D.A (2012) Anterior cingulate neurons in the rat map anticipated effort and reward to their associated action sequences. J Neurophysiol. 2012 May;107(9):2393-407. doi: 10.1152/jn.01012.2011. Epub 2012 Feb 8.   (PDF)

  7. Quinn, L.K., NitZ, D.A., Chiba, A.A. (2010) Learning-dependent dynamics of beta-frequency oscillations in the basal forebrain of rats. Eur. J. Neuroscience, pgs. 1-9.  (PDF)

  8. Nitz, D.A. (2011) Path shape impacts the exent of CA1 pattern recurrence both within and across environments. J. Neurophysiology 105, pgs. 1815-1824.  (PDF)

  9. Wilent, W.B., Nitz, D.A. (2007) Discrete place fields of hippocampal formation interneurons. J. Neurophysiol. 97(6):4152-61.  (PDF)

  10. Nitz, D.A., McNaughton, B.L. (2004) Differential modulation of CA1 and Dentate Gyrus interneurons during exploration of novel environments. J. Neurophysiology, 93(2):863-72.  (PDF)


  1. Whitlock, J.R, Pfuhl, G., Dagslott, N., Moser, M., Moser, E. (2012) Functional split between parietal and entorhinal cortices in the rat. Neuron Volume 73, Issue 4, 789-802, 23 February 2012. doi:10.1016/j.neuron.2011.12.028  (PDF)

  2. A.S. Gupta, M.A.A. van der Meer, D.S.Touretzky, A.D. Redish (2012) “Segmentation of spatial experience by hippocampal theta sequences” Nature Neuroscience 15(1032-1039).  (PDF)

  3. Mayank R. Mehta, Carol A. Barnes & Bruce L. McNaughton. (1997) Experience-dependent, asymmetric expansion of hippocampal place fields. PNAS USA, 94: 8918-8921(PDF)

  4. Cho J, Sharp P. (2001) Head direction, place, and movement correlated for cells in the rat retrosplenial cortex. Behavioral Neuroscience Vol 115, No. 1, 3-25.  (PDF)

  5. Durstewitz D, Seamans JK (2008) The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry. 2008 Nov 1;64(9):739-49. doi: 10.1016/j.biopsych.2008.05.015.  (PDF)

  6. Frank LM, Brown EN, and Wilson MA (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron, 27: 169-178. (PDF)

  7. Jadhav SP, Kemere C, German PW, Frank LM. (2012). Awake hippocampal sharp-wave ripples support spatial memory. Science. 336(60 87):1454-1458.  (PDF)

  8. Foster DJ, Wilson MA. (2005). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680-683  (PDF)

  9. Diba K, Buzsaki G. (2007) Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience 10, 1241 - 1242  (PDF)

  10. Harvey CD, Collman F, Dombeck DA, Tank D. (2009). Intracellular dynamics of hippocampal place cells during virtual navigation. Nature vol 461. doi: 10.1038  (PDF)

  11. Lee D, Lin B, Lee A. (2012). Hippocampal place fields emerge upon single cell manipulation of excitability during behavior. Science 337, 849. DOI: 10.1126/science.1221489.  (PDF)

  12. Mita A, Mushiake H, Shima K, Matsuzaka Y, Tanji J. (2009). Interval time coding by neurons in the presupplementary and supplementary motor areas. Nature Neuroscience vol 12 number 4. doi:10.1038/nn.2272. (PDF)

  13. Shima K, Isoda M, Mushiake H, Tanji J. (2007). Categorization of behavioral sequences in the prefronal cortex. Nature vol 445. doi: 10.1038  (PDF)


  1. Hafting, T.; Fyhn, M.; Molden, S.; Moser, M. -B.; Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature 436 (7052): 801–806.  (PDF)

  2. Taube, JS; Muller RU, Ranck JB Jr. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10 (2): 436–447 (PDF)

  3. O'keefe J, Dostrovsky J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. Brain Research, 34(1971) 171-175.  (PDF)

  4. Solstad, T.; Boccara, C. N.; Kropff, E.; Moser, M. -B.; Moser, E. I. (2008). Representation of Geometric Borders in the Entorhinal Cortex. Science 322 (5909): 1865–1868. doi:10.1126/science.1166466  (PDF)

  5. Wilson MA, McNaughton BL. (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679.  (PDF)

  6. Wilson MA, McNaughton BL. (1993) Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058.  (PDF)

  7. O'Keefe J, Recee M. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus vol 3, number 3 pg 317-330.  (PDF)

  8. Lubenov E, Siapas A. (2009). Hippocampal theta oscillations are travelling waves. Nature. Vol. 459. doi: 10.1030.  (PDF)

  9. Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230(4724):456–458.  (PDF)

  10. Matthew V. Chafee , Patricia S. Goldman-Rakic (2000) Journal of NeurophysiologyPublished 1 March 2000 Vol. 83no. 1550-1566.  (PDF)

  11. Ylinen A, Bragin A, Nadasdy Z, Jando G, Szabo I, Sik A, Buzsaki G. (1995). Sharp wave- associated high frequency oscillation (200Hz) in the intact hippocampus: network and intracellular mechanisms. Journal of Neuroscience 15(1): 30-46.  (PDF)

  12. Whishaw I, Vanderwolf CH. (1973). Hippocampal EEG and behavior: changes in amplitude and frequency of RSA (theta rhythm) associated with spontantous and learned movement patterns in rats and cats. Behavioral Biology, 8, 461-484.  (PDF)

  13. Gallese V, Fadiga L, Fogassi L, Rizzolatti G. (1996). Action recognition in the premotor cortex. Brain, 199, 593-609.  (PDF)

  14. Duhamel J, Colby C, Goldberg M. (1998). Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol. 1998 Jan;79(1):126-36.  (PDF)

  15. Fuster J. (1973). Unit activity in prefrontal cortex during delyed-reposne performance: neuronal correlates of transient memory. Journal of Neurophysiology. Vol. 36no. 61-78  (PDF)

  16. Quintana J, Fuster J. (1999). From perception to action: temproal integrative functions of prefrontal and parietal neurons. Cereb. Cortex (1999) 9 (3): 213-221 doi: 10.1093/cercor/9.3.213  (PDF)

  17. Williams G, Goldman-Rakic P. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature vol 376.  (PDF)